
 Copyright by the EU-CIRCLE consortium, 2015-2018

EU-CIRCLE is a project that

innovation programme under grant agreement No 653824. Please see http://www.eu-circle.eu/for more
information.

 DISCLAIMER: This document contains material, which is the copyright of EU-CIRCLE consortium members and the
European Commission, and may not be reproduced or copied without permission, except as mandated by the
European Commission Grant Agreement no. 653824 for reviewing and dissemination purposes.

The information contained in this document is provided by the copyright holders "as is" and any express or
implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose are disclaimed. In no event shall the members of the EU-CIRCLE collaboration, including the
copyright holders, or the European Commission be liable for any direct, indirect, incidental, special, exemplary,
or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of
use, data, or profits; or business interruption) however caused and on any theory of liability, whether in
contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of the
information contained in this document, even if advised of the possibility of such damage.

D5.1 CIRP detail design document v1

Contractual Delivery Date: 01/04/2016 Actual Delivery Date: 01/04/2016

Type: Report

Version: 1.0

Dissemination Level: Public Deliverable

Statement

This report (version 1) presents the architecture and detailed specifications of the Climate
Infrastructure Resilience Platform (CIRP). More specifically the CIRP system overview along with
key design considerations, design strategies and decisions, architecture and detailed description of
the platform modules are presented with the aim to set the stage for the subsequent
developments that will take place in the frame of Tasks 5.2 5.6 of WP5.

http://www.eu-circle.eu/
http://www.eu-circle.eu/

D5.1 CIRP detail design document V0.9

Grant Agreement 653824 Public Page 1

Preparation Slip

 Name Partner Date

From Leonidas Perlepes STWS 20/03/2016

Reviewer Patrick Brausewetter IVI 30/03/2016

Reviewer David Prior XUV 31/03/2016

For delivery Antonis Kostaridis STWS 31/03/2016

Document Log

Issue Date Comment Author / Organization

V0.1 10/01/2016 TOC L. Perlepes / STWS

V0.2 18/01/2016 Initial Text introduced L. Perlepes / STWS

V0.3 14/02/2016 Architecture L. Perlepes / STWS, O. Politi / STWS

V0.4 10/03/2016 Design Considerations/Strategies O. Politi / STWS, M. Troulinos / STWS

V0.5 20/03/2016 Detailed Module Design O. Politi / STWS, M. Troulinos / STWS

V0.6 26/03/2016 Ready for Review L. Perlepes / STWS

V0.7 30/03/2016 Internal Review P. Brausewetter /IVI

V0.8 31/03/2016 Revisions based on IVIs comments L. Perlepes / STWS

V0.9 31/03/2016 Final Review D. Prior / XUV

V1.0 31/03/2016 Final version 1.0 A. Kostaridis / STWS

D5.1 CIRP detail design document V0.9

Grant Agreement 653824 Public Page 2

Abbreviations List

Term Description

API Application Programming Interface

AWT Abstract Window Toolkit

CEF Chameleon Enterprise Foundation

CIRP Critical Infrastructure Resilience Platform

CI Critical Infrastructure

DoA Description of Action

DC Design Consideration

DS Design Strategy

DPT Design Policy and Tactic

GEF Graphical Editing Framework

GIS Geographical Information System

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

JDBC Java Database Connectivity

JEE Java Enterprise Edition

JMS Java Messaging Service

JNDI Java Naming Directory Interface

JNLP Java Network Location Protocol

JRE Java Runtime Environment

OGC Open Geospatial Consortium

ORM Object Relational Mapping

OSGi Open Services Gateway Initiative

PC Personal Computer

RCP Rich Client Platform

RIA Rich Internet Application

D5.1 CIRP detail design document V0.9

Grant Agreement 653824 Public Page 3

RMI Remote Method Invocation

SWT Standard Widget Toolkit

UML Unified Modelling Language

WebDAV Web Distributed Authoring and Versioning

XML Extensible Markup Language

D5.1 CIRP detail design document V0.9

Grant Agreement 653824 Public Page 4

Executive Summary

EU- resilience of the interconnected
European Critical Infrastructure to climate pressures as the increasingly dependent, interdependent and
interconnected nature of CI networks exposes previously unseen risks, new vulnerabilities, and
opportunities for disruption of those networks.

This document constitutes the first version of the Detailed Design of the Climate Infrastructure Resilience
Platform (CIRP): an innovative modular and expandable software platform that will assess potential impacts
due to climate hazards; provide monitoring through new resilience indicators, and support cost-efficient
adaptation measures. In this context, CI policy-makers, decision makers and scientists have access to
diverse simulation, modelling and risk assessment solutions in a homogenised environment that allows
both the development of risk reduction strategies and the implementation of mitigation actions to
minimize the impact of climate change on CI. This modelling approach can help improve the understanding
of system interdependencies and reduce the time from gap discovery to gap closure by providing decision
makers with the latest tools, based on the best scientific and engineering principles, as they emerge.

The CIRP is defined as an end-to-end collaborative modelling environment where new analyses can be
added anywhere along the analysis workflow and where multiple scientific disciplines can work together to
understand interdependencies, validate results, and present findings in a unified manner providing an
efficient solution that integrates existing modelling tools and data into a holistic resilience model in a
standardised fashion.

The CIRP detailed design has been based on key design considerations and adopted design strategies and
policies in order to meet the system expectations as described in the project Description of Action and the
EU-Circle Strategic Context (D1.3). These considerations and design strategies have been incorporated into
the CIRP architecture and the detailed design of its components. More specifically CIRP is based on an
extensible modular architecture that will be shared across multiple communities and enable users to
leverage existing software analysis types and algorithms, inventory types, and fragilities while not binding
the underlying platform to a particular scientific domain. This pluggable, open architecture is what will
allow CIRP to support a wide variety of domain specific functionality. Domain specific functionality will be
isolated in plugins and will extend to the repackaging of different functional aspects as a starting point for
new applications or, through extension, to add new analytical capabilities in the future.

The CIRP is intended to be a user-friendly environment that will provide its users with the ability to analyse
what-if scenarios: leveraging model selection, climate data repositories, and CI inventories in order to
calculate damages for any kind of climate hazard and CI.

In this way, users will be able to understand the impact of various adaptation strategies or quantify the
potential impact of a catastrophic event on society.

D5.1 CIRP detail design document V0.9

Grant Agreement 653824 Public Page 5

Contents

EXECUTIVE SUMMARY .. 4

CONTENTS .. 5

1 INTRODUCTION ... 7

2 METHODOLOGY ... 9

3 SYSTEM OVERVIEW ... 10

4 DESIGN CONSIDERATIONS ... 12

5 ARCHITECTURAL STRATEGIES ... 16

5.1 Open Services Gateway Initiative .. 18

 Modules .. 18 5.1.1

 Deployment ... 19 5.1.2

5.2 Java Enterprise Edition .. 19

 Containers ... 20 5.2.1

5.3 Object-relational Mapping .. 20

5.4 Eclipse Rich Client Platform ... 21

5.5 Java Web Start ... 22

5.6 The CEF Platform ... 22

5.7 The ERGO-CORE Platform .. 23

6 SYSTEM ARCHITECTURE ... 25

7 DESIGN POLICIES AND TACTICS .. 28

8 DETAILED MODULE DESIGN ... 29

8.1 The CEF Core Component .. 29

 Conceptual Design .. 30 8.1.1

 Extensibility ... 31 8.1.2

8.2 User Management Component ... 31

 Hierarchical management of organisations.. 32 8.2.1

 Roles and Access Rights .. 32 8.2.2

8.3 Repository Manager Component .. 32

 Local Repository .. 33 8.3.1

 Remote Repository .. 34 8.3.2

 Data Formats .. 34 8.3.3

8.4 GIS Engine Component .. 38

 Conceptual Design .. 39 8.4.1

8.5 ERGO-CORE Components .. 41

 Conceptual Design .. 41 8.5.1

 Scenario Manager ... 44 8.5.2

 Analysis Manager ... 45 8.5.3

8.6 Output Manager .. 48

 2D Map Plugin .. 48 8.6.1

 3D Map Plugins ... 48 8.6.2

D5.1 CIRP detail design document V0.9

Grant Agreement 653824 Public Page 6

 Chart Plugin .. 49 8.6.3

 Report Plugins ... 49 8.6.4

 Tables .. 49 8.6.5

8.7 User Collaboration Components ... 49

8.8 Graphical User Interface .. 50

9 CONCLUSIONS ... 51

10 BIBLIOGRAPHY .. 52

D5.1 CIRP detail design document V0.9

Grant Agreement 653824 Public Page 7

1 Introduction

Critical Infrastructures are essential elements for the functioning of all socioeconomic activity of
industrialised nations. The functional loss of these systems due to an external event can cause severe
impact on a community in many different ways. It is evident that the increasingly dependent,
interdependent, and interconnected nature of European Critical Infrastructures exposes previously unseen
risks, new vulnerabilities, and opportunities for disruption across the CI networks.

EU-CIRCLE

vulnerabilities and impacts go far beyond physical damages and thus EU-CIRLCE will be concerned with an
assessment of the impacts to the services provided by CIs, addressing impacts associated with the repair,
and/or replacement of services but also including the externalities of the infrastructures operation, societal
costs, environmental effects, and economic costs due to suspended activities.

Such assessments will be carried out on a validated Climate Infrastructure Resilience Platform (CIRP). The
CIRP is a standalone and comprehensive software toolbox that will assess potential impacts due to climate
hazards, provide monitoring through new resilience indicators, and support cost-efficient adaptation
measures. In this context the CIRP is established as an end-to-end modelling environment where new
analyses can be added anywhere along the analysis workflow, and where multiple scientific disciplines can
work together to understand interdependencies, validate results, and present findings in a unified manner.
The CIRP provides an efficient solution that integrates existing modelling tools and data into a holistic
resilience model in a standardised fashion.

This deliverable presents the initial detailed design version of the CIRP platform from the technological
perspective as part of Task 5.1 with the aim to pave the way for the subsequent system development and
component integrations of WP5. This deliverable will be refined (second iteration) according to the
feedback and the new design requirements and as may be identified, quantified, and prioritised by the
other work packages within EU-CIRCLE including, for example, the definition of the critical infrastructure
risk model for climate hazards that will delivered by the WP3.The work package structure of EU-CIRCLE and
especially the separation of Tasks in WP3, 4, 5 and 6 was based on the idea that risk model development
and software development are two distinct activities and that the right approach for EU-CIRCLE is the one
in which scientists and engineers develop the risk model (inputs, outputs, calibration, validation) and
software developers work closely with this team to build efficient and user-friendly tools that are easily
extended and adapted to suit a wide range of applications. In this respect, it is mandatory from the design
perspective that the software platform is able to accommodate different types of datasets (e.g. hazard,
assets, interconnections, fragilities), file formats, and risk analysis algorithms and that it provides adequate
user interface elements for scenario and data repository management, analysis workflows setup, and
intuitive results visualisation and reporting. As described in the DoA, the CIRP should be open, modular and
extensible in order to support various risk and resilience assessment analysis tools not only from the
project partners themselves, but also from the scientific community as part of the outreach objective of the
project.

The CIRP design is based on a list of requirements described initially by the Description of Action document
(e.g. open source, web-based, multi-hazard, extensible, plug-n-play, scenario based analysis, support for
different types of analysis algorithms) and enhanced by the partners knowledge and experience in
developing modular software systems; a literature review regarding assessments of existing open source
software tools, and the functional and non-functional requirements according to the consortium
discussions conducted during the various project plenary and technical meetings (e.g. support of data
repositories, ability to execute internal and external software codes, GIS capabilities). In addition, and with
the aim of improving the transfer of knowledge and innovation from the scientific community to industry
and CI stakeholders, the CIRP design encompasses a friendly graphical user interface where scenarios can

D5.1 CIRP detail design document V0.9

Grant Agreement 653824 Public Page 8

be built and executed not only by scientists and climate and natural hazards risk assessment experts but
also by CI operators, infrastructure owners, investors and regulators.

This Deliverable is the first iteration of the CIRP detailed design. The second and final iteration will update
this version at the end of Task 5.1 by incorporating adaptions and changes in the architecture and system
components according to work to be conducted in WP3 and WP4 tasks and the CIRP User Interface and
modules development and integration (Tasks 5.2-5.7).

The rest of the document is structured as follows: the methodological approach followed is described in the
following Section 2. Section 3 presents the CIRP System Overview and Section 4 the key design
considerations. In Section 5, the design strategies selected to meet the design considerations are described
while in Sections 6 and 7, respectively, we present the CIRP architecture and design policies and. Finally the
detailed module design is described in Section 8.

D5.1 CIRP detail design document V0.9

Grant Agreement 653824 Public Page 9

2 Methodology

The following work is based on the CIRP initial functional specifications and design requirements that are
described by the Description of Action. The work has been conducted in the frame of Task 5.1 and factors
for the outcomes arising from the various project meetings to date and the EU-Circle Taxonomy and
Strategic Context deliverables (D1.1 and D1.3). More specifically, the following meetings shaped the key
architectural decision and strategies of the CIRP detailed design:

 The pro -off meeting held at National Center For Scientific Research - Demokritos (NCSRD)
premises, Athens Greece, 9 & 10 June2015;

 The 2nd project meeting held at the European University Cyprus (EUC) premises, Nicosia Cyprus, 26
& 27 November 2015;

 The joint EU-CIRCLE NIST-CORE workshop held in NCSRD premises, Athens Greece, 5-7 October
2015, and

 Bilateral discussions of EU-CIRCLE partners in regular Skype and telephone calls

Based on the input from the above meetings and deliverables D1.1 and D1.3, a set of Design Considerations
has been compiled (Section 4). To meet these requirements a number of Architectural Strategies (Section
5) that affect the overall organization of the CIRP and its higher-level structures, as well as specific Design
Policies and Tactics (Section 7), were adopted. In parallel, the state of the art in software tools and related
architectures for Natural Hazard Risk Assessment have been studied [1] and suitable open source software
frameworks have been selected as the basic building blocks of the CIRP. The selected strategies, policies,
and frameworks provide insight into and stimulus for the selection of key abstractions and mechanisms
used in the definition of the system architecture (Section 6).

Finally, the detailed design of CIRP components was developed and evaluated. This process defined the
specific purpose and semantic meaning of each component: assigning primary responsibilities and/or
behaviours to each component supported by relevant assumptions, limitations, or constraints.

D5.1 CIRP detail design document V0.9

Grant Agreement 653824 Public Page 10

3 System Overview

The Climate Infrastructure Resilience Platform (CIRP) will comprise a ubiquitous collaborative environment
that shall create new capabilities for CI policy-makers, decision makers, and scientists by allowing them to
use different and diverse modelling and risk assessment solutions, in a standardised and homogenised
environment, to develop risk reduction strategies and implement mitigation actions that help minimise the
impact of climate change on CIs. This approach to modelling can help improve the understanding of system
interdependencies and reduce the time from gap discovery to gap closure by providing decision makers
with the latest tools, based on the best scientific and engineering principles, as they emerge.

Overall, the intention is for Risk management professionals to be familiar with identifying vulnerabilities,
assessing loss reduction strategies, guiding resource allocation before disasters, identifying vulnerable
areas during disasters, guiding recovery efforts, and providing information to decision-makers throughout
the process. The essential elements for structural damage assessment are hazard, inventory, and fragility.
Hazard is considered as the descriptive parameter quantifying the possible phenomenon within a region of
interest. The assets in a region exposed to hazards are defined by inventory. Finally, fragility is the
sensitivity of certain types of inventory items when subjected to a given hazard. Assuring that the science
and engineering principles behind the forecasting of damage probability of Critical Infrastructures
(buildings, bridges, networks, pipelines, and other inventory items) from anticipated events is both
pragmatic and state-of-the-art is therefore critical to minimising the impact of climate change events,
reducing losses to economic resources, and the development of more stable communities.

Many risk assessment tools and platforms exist today. Most, however, lack the flexibility to easily add new
algorithms or to extend their base features. This is typically due to a combination of architectural approach
and closed-source licensing policies. Such software does not allow the community to actively contribute
new algorithms and capabilities and, therefore, allow the software to evolve with the advancements of
science. Furthermore, software-licensing fees from proprietary vendors can make such packages
unaffordable for many members of the community.

A primary objective for the CIRP is that it be engineered as a pluggable and extensible platform that will
enable the Risk Management community to bring new data and modelling capabilities into practice. From
the CIRP policy and decision maker perspective, the platform capabilities will be offered as a toolbox that
consists of a collection of diverse analyses of Risk and Resilience of Critical Infrastructures that are exposed
to the direct and indirect effects of climate change.

CIRP users will be able to create and store scenarios by means of selection of a chain of analysis tools. Each
analysis tool is associated with input and output parameters and relevant datasets that conform to the
platform supported types. It will be possible to chain analysis tools to form analysis workflows and each
individual analysis in the workflow will be monitored as provided for by the analysis type, the geographical
span of the scenario, and the number of CI elements analysed. An analysis will be able to be executed in
seconds, minutes or even hours. The design of the CIRP provides a uniform user experience for the user
input of values and selection of input datasets. Each analysis tool within the CIRP is described in the
Extensible Markup Language (XML) and transformed at runtime into suitable widgets and user interface
controls.

The following Use Case UML diagram presents the main use cases of the CIRP. They are organised in the
following five (5) packages:

 Administration

 Scenario Setup

 Scenario Processing

 Post-Processing

D5.1 CIRP detail design document V0.9

Grant Agreement 653824 Public Page 11

 Collaboration

Figure 1: CIRP Use Cases Diagram

The administration package encompasses user requirements from the point of view of CIRP enterprise
application administration. The scenario setup, processing, and post-processing packages encompass all of
the different requirements and interactions of the CI Operators and Scientists in the context of preparing,
executing, and post-processing risk analysis workflows. Finally, the collaboration package consists of the
sequence of actions for creating collaborative sessions in which users will be able to navigate into
simulation areas, observe the results, annotate the map, and exchange messages in real time.

D5.1 CIRP detail design document V0.9

Grant Agreement 653824 Public Page 12

4 Design Considerations

The Climate Infrastructure Resilience Platform (CIRP) framework is designed as an end-to-end modelling
environment where new analyses can be added anywhere along the analysis workflow enabling scientists
to create new end-to-end analyses or to enhance existing analyses. Through this framework, multiple
scientific disciplines can work together to understand interdependencies, validate results, and present
findings in a unified manner. As a result, the CIRP framework provides
integrating existing modelling tools and data into a holistic resilience model in a standardised fashion.

The CIRP framework nt. As a result, the provided functionalities must be in
; such as the analysis of the resilience of multiple interconnected CI

for multiple climate hazards assessing multi-tier impacts and the evaluation of alternative solutions for
mitigation adaptation activities.

The criteria that were taken into account in order to design the CIRP framework are presented in the
following table:

 Table 1. CIRP Design Considerations

Code Design Consideration Description

DC.1 Platform Independence

Many factors influence a software package ease of use
and among them are the Operating System and coding
language. Even if Linux is currently the most common
operating system for supercomputers, most basic users
have experience in Windows operating systems.

DC.2 Flexible and Intuitive GUI

The GUI is an important factor in the design of the CIRP
because it determines its usability. Few users have the
technical skills that allow them to execute models using
command lines alone. For non-experts, grappling with
risk assessment concepts is usually quite difficult;
attempting to come to grips with what is being modelled
using a new software package makes things even harder.
Thus, simple software that allows a user to point, click,
and then understand is best for a non-expert. As a result,
the CIRP framework provides an easy-to-use GUI as well
as hazard, exposure, and vulnerability analyses, so that
users have more control over their analysis activities.

DC.3 User Orientation and Assistance

The software application should also be user-oriented,
with separate documentation available for those wishing
to modify or extend the tools and leverage any available
APIs (application programming interfaces), and with
tutorials, sample data, and expected results available for
training and testing model installation.

User assistance includes those tools that work collectively
to introduce the user to the software, to guide the user
through tasks, and to help the user find more information
about the software or specific component.

DC.4 Performance The CIRP framework design is focused on the
maximisation of accuracy with the minimal

D5.1 CIRP detail design document V0.9

Grant Agreement 653824 Public Page 13

computational effort. All the components can be run on a
standard PC (2.5GHz processor with 4GB of RAM and a
500GB hard drive). However, computationally expensive
algorithms and GIS-based components may require more
computing power. Ideally, users determine whether the
software algorithms are reasonable for their
computational purposes. The actual physical
computation is generally not computationally demanding
but, where memory is insufficient, the large volumes of
data (providing exposure or hazard event sets) can cause
problems. For deterministic use in post-disaster studies,
all of the components can be run in a reasonable time
(assuming the region is not extremely large, such as the
region of the city with its surroundings, and the data are
available). Rapid response data can be problematic,
however, if data sets are not publicly available for reuse.
In contrast, computing power plays a much more central
role in stochastic or probabilistic modelling i.e. in the
simulation of 10,000+ years of hazard events analyzed
against exposure data sets of varying sizes.

DC.5 Modularity and Extensibility

The CIRP design needs to be fully modular, allowing users
to perform specific analyses using only specific
components of the software, but also fully extensible by
project and third-party partners in order to introduce
new analyses and new data types.

DC.6 Multi User Collaborative Application

The CIRP will be accessible over the web to multiple,
simultaneous, registered users providing the capability
for collaboration sessions in which users can chat with
other users, mark up areas on the terrain, and toggle
scenario layers. In this way, users interact with the
platform risk assessment tools and at the same time
collaborate and discuss the results.

DC.7 Web based
The platform ideally should be accessible via the Web
(either as a pure Web based or browser downloadable
rich client application)

 Design Considerations specific to Risk Assessment

DC.8 Integrated GIS engine

Many Risk modelling software are based on commercial
license based Geographical Information System packages
that can be prohibitively expensive for many users. A key
CIRP design consideration is to be able to integrate with
an open source GIS engine that supports standardised
formats for input and output, spatial analysis utilities, and
a map view component.

DC.9 Exposure

A critical factor for any risk assessment is exposure data.
Thus, the CIRP framework will provide tools for managing
exposure data. Exposure is defined as the amount of
human activity located in the zones of hazard as defined
by the stock of infrastructure in that location. Depending

D5.1 CIRP detail design document V0.9

Grant Agreement 653824 Public Page 14

upon the vulnerability functions, exposure information
can be restricted to structural features, or it can be
extended to nonstructural features such as CI building
contents and to infrastructure services such as lifelines
and emergency response facilities. Exposure is a function
of the population, remote sensing, building use and other
building inventory data used. CIRP will classify the various
exposure elements using construction and occupancy
information associated with location information. This
information should be compatible with any vulnerability
function. CIRP will allow advanced users to provide
additional classification types, new risk indicators, and
supplemental socioeconomic parameters once relevant
checks have been made to the applicability of the
vulnerability, hazard, and loss modules.

DC.10 Vulnerability

One of the fundamental factors influencing a risk
assessment is vulnerability of the exposed assets. The
availability of data for input, calibration, and validation
governs the quality of the vulnerability module. The
vulnerability functions should be computationally simple
to allow for rapid response as well as consistent with
observations of historical damage. CIRP will be able to
accept additional exposure types and able to simulate
not only physical vulnerabilities but also socioeconomic
vulnerabilities.

DC.11 Hazards

The CIRP should accommodate both different built-in
Hazard analyses (the ones that are influenced directly or
indirectly by the climate change) and Hazard results
calculated in specialised external software packages.

DC.12 Risk

Risk can be quantified in a variety of ways. However, in
order to maximize effectiveness of the platform, CIRP is
designed according to a specific risk calculation. Losses
here may be calculated via a damage-loss conversion.
The economic losses generally account for direct loss
while estimates of indirect loss are less common. It is
generally common to use the mean damage ratio (repair
to replacement cost) and the variability from a
vulnerability function to derive an economic loss. In
addition, using a model for land-use planning and/or
cost-benefit analysis may be relevant but this capability is
highly dependent on the resolution of the model

DC.13 Visualization of Results

Model results are the most important output of any risk
analysis. CIRP should be able to visualise the results (in
terms of hazard, exposure, and vulnerability) in multiple
2D/3D GIS windows as well in multiple tabular views with
chart based statistic options as well as comprehensive
reports. In this way users will be able to analyse the
results in their preferred format and to compare them for
different input data.

D5.1 CIRP detail design document V0.9

Grant Agreement 653824 Public Page 15

DC.14 What-if scenario support

The ability to introduce and compare -if scenarios
translating into the selection of models, data,
interconnected CI description, multi-level damage
assessment, and adaptation / mitigation strategies, as
may be required to investigate the policy objective

DC.15 Post event scenario support

The ability to support post-event scenarios where speed,
simplicity of use, and quick access to information are
critical. The CIRP framework is designed according to the
need to generate products that would complement post-
event response, recovery, and reconstruction efforts. GIS
capabilities can also be important for post-event analysis.

DC.16 Comprehensible results
Scenario results will be provided to users of the system
and the EU-CIRCLE stakeholders through the use of

arties.

DC.17 Interconnected Analysis Workflows

The ability to graphically interconnect/chain various
analysis tools based on the output and input datasets for
independent or interdependent analysis types (e.g.
Interdependent Network Analysis).

DC.18 Development Simplicity

Provide the means for scientists/developers to define
specific analysis inputs and outputs (e.g. file result name)
in XML descriptor documents and, thereafter,
automatically generate the required User Interface forms
to support those input and output requirements. In this
way, scientists will not be required to produce user
interface specific code and platform end users are
presented with a unified experience across the platform.

DC.19
Efficient Data and Metadata
Management

A semantic content library is required to both manage
the data and metadata imported into the CIRP and to
provide the ability to search, tag, and annotate the
imported data.

D5.1 CIRP detail design document V0.9

Grant Agreement 653824 Public Page 16

5 Architectural Strategies

In the section we describe the main decisions and/or strategies that affect the overall organization of the
CIRP and its higher-level structures. These strategies provide direction for the key abstractions and
mechanisms used in the system architecture (Section 6).

The following Table summarizes the decisions and strategies. The reasoning leading to each outcome is
described by reference to the stated goals and principles of the previous Section 4. Additionally, any design
goals or priorities that were balanced or traded-off in the selection process are also detailed.

 Table 2. Architectural Decisions and Strategies

Code Decision / Strategy Description
Design

Considerations
Ref. Codes

ADS.1 Java Coding Language

The Java Language is one of the most popular
programming languages in use; particularly for client-
server web applications. This choice was informed by
both platform independence and the modularity and
extensibility offered by the JVM based Eclipse Rich Client
Platform and Open Services Gateway Initiative
technologies (see ADS.5 and ADS.6). In this decision we
traded-off the potentially enhanced performance of
other languages against the flexibility, modularity and
extensibility offered by Java/OSGi.

DC.1

,

DC.4

ADS.2 Java Enterprise Edition

The JEE is a widely used enterprise computing platform
developed under the Java Community Process. The
platform provides an API and runtime environment for
developing and running enterprise software, including
network and web services, and other large-scale, multi-
tiered, scalable, reliable, and secure network
applications.

DC.1

,
DC.6
User
Collaborative
Applic

ADS.3
Object Relational
Mapping

ORM enables developers to more easily write
applications whose data outlives the application
process. An Object/Relational Mapping (ORM)
framework is concerned with data persistence as it
applies to relational databases (via JDBC).

DC.18

ADS.4
Web Start based Rich
Client application

The Java Web Start is a framework developed by Sun
Microsystems (now Oracle) that allows users to start
application software for the Java Platform directly from
the Internet using a web browser. Some key benefits of
this technology include seamless version updating for
globally distributed applications and greater control of
memory allocation to the Java virtual machine.

DC.6
User
Collaborative

,
DC.7

ADS.5 Service Platform

The OSGi Service Platform is the de-facto standard for
modularised Java Language. It is a framework that
provides a dynamic environment for the deployment of
services and modules (referred as bundles in OSGi

DC.5

and

http://www.bradapp.com/docs/sdd.html#TOC_SEC11

D5.1 CIRP detail design document V0.9

Grant Agreement 653824 Public Page 17

terminology).

ADS.6 Eclipse RCP

RCP which provides the architecture and framework to
build rich client application
OSGi makes it one of the only UI technologies to
leverage modularity from the ground up.

DC.2
and Intuitive

,

 DC.5

and

ADS.7

Development
frameworks Reuse of
existing software
components

The CIRP will be based on two distinct frameworks both
based on the OSGi. The first one is the CEF (Chameleon
Enterprise Foundation), an Enterprise Application
Framework developed by Satways Ltd. The second one
is the ERGO-CORE platform, an Open Source Risk
Assessment desktop software.

DC.5 - DC.19

Collaborative

-if scenario

Metadata

ADS.8
Data repositories for
Data and Metadata
Management

CIRP will provide efficient management and
synchronization of different data repositories, either of
public domain, of cached locally (local repository).
Execution of analysis based on cached/local data
provide the necessary speedup and tolerance of low
speed networks while the synchronization with public
repositories provide the means for scenario input and
output results dissemination to other platform
members. A semantic content library will track the
provenance of data so that users can determine
information such as which algorithms were used, the
date it was created, the author, which machine was
used, etc.

DC.19-
Efficient Data
and Metadata

ADS.9 Context Sensitive Help
In the context of CIRP, user assistance will be provided
by Developer and User manuals as well as context
sensitive help support, where a user can summon help

DC.3
Orientation and

D5.1 CIRP detail design document V0.9

Grant Agreement 653824 Public Page 18

for a particular element in the UI (e.g. by pressing F1
key).

In the following subsections each architectural strategy is presented in more detail.

5.1 Open Services Gateway Initiative

The OSGi technology is a set of specifications that define a dynamic component system for Java. These
specifications enable a development model where applications are (dynamically) composed of many
different (reusable) components. The OSGi specifications enable components to hide their
implementations from other components while communicating through services, which are objects that
are specifically shared between components.

A practical advantage of OSGi is that every software component can define its API via a set of exported Java
packages and that every component can specify its required dependencies. The components and services
can be dynamically installed, activated, de-activated, updated, and de-installed. The OSGi specification
defines a bundle as the smallest unit of modularization, i.e., in OSGi, a software component is a bundle.

The OSGi has a layered model that is depicted in the following figure.

Figure 2: OSGi layered model

The following list contains a short definition of the terms:

 Bundles Bundles are the OSGi components made by the developers.

 Services The services layer connects bundles in a dynamic way by offering a publish-find-bind
model for plain old Java objects.

 Life-Cycle The API to install, start, stop, update, and uninstall bundles.

 Modules The layer that defines how a bundle can import and export code.

 Security The layer that handles the security aspects.

 Execution Environment Defines what methods and classes are available in a specific platform.

 Modules 5.1.1

The fundamental concept that enables such a system is modularity. Modularity, simply put, is about
assuming less. Modularity is about keeping things local and not sharing. Therefore, modularity is at the core
of the OSGi specifications and embodied in the bundle concept. Though the code hiding and explicit sharing
provides many benefits (for example, allowing multiple versions of the same library being used in a single
Virtual Machine), the code sharing exists only to support the OSGi services model. The services model is
concerned with bundles that collaborate.

D5.1 CIRP detail design document V0.9

Grant Agreement 653824 Public Page 19

 Deployment 5.1.2

Bundles are deployed on an OSGi framework: the bundle runtime environment. It is a collaborative
environment within which bundles run in the same VM and can actually share code. The framework uses
the explicit imports and exports exposed by each bundle to wire up the bundles so they do not have to
concern themselves with class loading. Moreover, the management of the framework is standardised. A
simple API allows bundles to install, start, stop, and update other bundles, as well as enumerating the
bundles and their service usage. Many management agents have used this API methodology to control
OSGi frameworks.

5.2 Java Enterprise Edition

JEE (Java Enterprise Edition) is a Java platform designed for the mainframe-scale computing typical of large
enterprises. Sun Microsystems (together with industry partners such as IBM) designed JEE to simplify
application development in a thin-client, tiered environment. Java Enterprise Edition, Java EE, or JEE is a
widely used enterprise-computing platform developed under the Java Community Process. The platform
provides an API and runtime environment for the development and execution of enterprise software;
including network and web services as well as other large-scale, multi-tiered, scalable, reliable, and secure
network applications. JEE simplifies application development and decreases the need for programming and
programmer training by creating standardised, reusable, modular components and by enabling the
enterprise tier to handle many aspects of programming automatically. Java EE includes several API
specifications, such as RMI, e-mail, JMS, web services, XML, etc., and defines how these should be co-
ordinated. Java EE also features some unique component specifications. These include Enterprise
JavaBeans, connectors, servlets, Java Server Pages (JSP), and several web service technologies. This allows
developers to create enterprise applications that are portable and scalable and that integrate with legacy
technologies. A Java EE application server can handle transactions, security, scalability, concurrency and
management of the components deployed within it. This enables developers to concentrate more on the
business logic of the components rather than on infrastructure and integration tasks.

Figure 3: JEE Architecture

Normally, thin-client multi-tiered applications are hard to write because they involve many lines of intricate
code to handle transaction and state management, multithreading, resource pooling, and other complex
low-level details. The component-based and platform-independent JEE architecture makes JEE applications
easy to write because business logic is organised into reusable components. In addition, the JEE server
provides underlying services in the form of a container for every component type. Because developers are
not developing these services themselves, they are free to concentrate on solving the business problem at
hand.

D5.1 CIRP detail design document V0.9

Grant Agreement 653824 Public Page 20

 Containers 5.2.1

Containers are the interface between a component and the low-level platform-specific functionality that
supports the component. Before a Web, enterprise bean, or application client component can be executed,
it must be assembled into a JEE application and deployed into its container.

The assembly process involves specifying container settings for each component in the JEE application and
for the JEE application itself. Container settings customize the underlying support provided by the JEE
server, which includes services such as security, transaction management, Java Naming and Directory
Interface (JNDI) lookups, and remote connectivity. Here are some of the highlights:

 The JEE security model lets you configure a Web component or enterprise bean so that system
resources are accessed only by authorised users.

 The JEE transaction model lets you specify relationships among methods that make up a single
transaction so that all methods in one transaction are treated as a single unit.

 JNDI lookup services provide a unified interface to multiple naming and directory services in the
enterprise so that application components can access naming and directory services.

 The JEE remote connectivity model manages low-level communications between clients and
enterprise beans. After an enterprise bean is created, a client invokes methods on it as if it were in
the same virtual machine.

The fact that the JEE architecture provides configurable services means that application components within
the same JEE application can behave differently based on where they are deployed. For example, an
enterprise bean can have security settings that allow it a certain level of access to database data in one
production environment and another level of database access in another production environment.

The container also manages non-configurable services such as enterprise bean and servlet life cycles,
database connection resource pooling, data persistence, and access to the JEE platform APIs.

5.3 Object-relational Mapping

Object-relational mapping (ORM, O/RM, and O/R mapping) in computer science is a programming
technique for converting data between incompatible type systems in object-oriented programming
languages. Object-relational mapping (ORM) is a mechanism that makes it possible to address, access and
manipulate objects without having to consider how those objects relate to their data sources. ORM lets
programmers maintain a consistent view of objects over time, even as the sources that deliver them, the
sinks that receive them, and the applications that access them change. Based on abstraction, ORM
manages the mapping details between a set of objects and underlying relational databases, XML
repositories, or other data sources and sinks while simultaneously hiding the more volatile details of
related interfaces from developers and the code they create. ORM encapsulates and abstracts change in
the data source itself, so that when data sources or their APIs change, only ORM needs to change to keep
up not the applications that use ORM to insulate themselves from this kind of effort. This capacity lets
developers take advantage of new classes as they become available and also makes it easy to extend ORM-
based applications. In many cases, ORM changes can incorporate new technology and capability without
requiring changes to the code for related applications.

D5.1 CIRP detail design document V0.9

Grant Agreement 653824 Public Page 21

Figure 4: Object-relational Mapping

Many ORM frameworks exist and Hibernate is the framework of choice. In addition to its own "native" API,
Hibernate is also an implementation of the Java Persistence API (JPA) specification. As such, it can be easily
used in any environment supporting JPA including Java SE applications, Java EE application servers,
Enterprise OSGi containers, etc.

5.4 Eclipse Rich Client Platform

The Eclipse RCP is not a single framework, but a collection of lower-level frameworks. Most technologies
rely on other lower-level technologies, and RCP is no different. Specifically, RCP leverages:

OSGi At the lowest level, all RCP applications run on top of an OSGi framework.

SWT The Standard Widget Toolkit provides the primitive widgets (text controls, radio buttons, etc.) used
to create platform independent RCP user interfaces. It functions much like AWT in a traditional Swing
application.

JFace Building on top of SWT, JFace provides a variety of advanced UI functionality including wizards,
preference pages, data binding and much more.

Other Eclipse APIs RCP relies on a host of other Eclipse frameworks that are not strictly part of RCP itself.
These include the Jobs API for managing concurrency and the Commands API that provides menu support.

Figure 5: The Eclipse RCP layers

D5.1 CIRP detail design document V0.9

Grant Agreement 653824 Public Page 22

What RCP does is to integrate these frameworks to provide a workbench into which developers can
contribute content. This workbench has a specific, though highly-customisable, structure which defines the
places where content can be added. A workbench defines where we can contribute menus, wizards,
preferences, help content, and much more. A workbench also contains perspectives, which themselves can
contain editors and views.

As the Chameleon Enterprise Framework and ERGO-CORE bundles both are based on the Eclipse RCP plugin
system their integration and further extension with Risk Assessment and User Collaboration plugins is
straightforward.

5.5 Java Web Start

The JNLP is a protocol that is used interchangeably with the term "Web Start". The JNLP protocol, defined
with an XML schema, specifies how to launch Java Web Start applications. JNLP consists of a set of rules
defining how exactly to implement the launching mechanism. JNLP files include information such as the
location of the jar package file and the name of the main class for the application, in addition to any other
parameters for the program. A properly configured browser passes JNLP files to a Java Runtime
Environment (JRE), which in turn downloads the application onto the user's machine and starts executing it.

5.6 The CEF Platform

The Chameleon Enterprise Foundation (CEF) is a software platform, designed and developed by Satways
Ltd, for building geospatial multi-user Enterprise Applications. It is based on the RCP, OSGi and JEE
technologies and provides a rich collection of OSGi bundles for organization and user management, logging,
UI widgets, ORM persistence, etc. These bundles interact with each other via the RCP extensions and
extension points in the form of an Application Programming Interface (API). The API is defined as a set of
classes and methods that can be used from other bundles. The CEF provides the basic set of services for a
RIA enterprise application

The basic set of functionalities offered by the CEF is the following:

 Intuitive Graphical User Interface

 Event driven architecture (EDA)

 Multiple monitor/screen support

 Organization, User and Role Management

 User authentication

 User Collaboration

 JEE Integration (JNDI, EJB, JMS)

 Support of Multiple Mapping/GIS engines

 Extensibility Framework (contribution interfaces and contributions)

 Database Connection Pooling and Object relational mapping (ORM)

 Common User interface framework

 Common Logging framework

 Various developer Utilities

 Automatic Fail-over and load balancing

 Extensibility (new plugins can be created by 3rd parties)

 Java Web start support

D5.1 CIRP detail design document V0.9

Grant Agreement 653824 Public Page 23

Each of the above bundles interacts with a number of Enterprise Java Beans (EJBs) components on the
server side and a Messaging System for real time notifications. On the back end, a PostgreSQL database
with the PostGIS extension or an Oracle Enterprise Edition database is deployed to provide the geospatial
capabilities at the database layer.

The CEF platform provides a bundle extensibility framework according to the OSGi specification. This means
that a contributing bundle can provide contribution to existing CEF interfaces and can provide contribution
interfaces for other bundles. Any resulting application is therefore highly modular and, accordingly,
extensible. In addition, use of a azy loading bundle mechanism provides greater loading speed and
memory efficiency as bundles are loaded only when needed.

Figure 6: The CEF platform components

5.7 The ERGO-CORE Platform

The ERGO-CORE is the base IT infrastructure of the ERGO [2] an open-source project that was originally
developed under the name Maeviz to perform seismic risk assessment s objective is to reduce the
time-from-discovery gap that exists between researchers, practitioners, and decision makers by integrating
the latest research findings, most accurate data, and new methodologies into a single software product.

The ERGO-CORE is based on RCP technology and consists of a set of OSGi bundles that provide baseline
data/metadata management, visualization, modelling, analysis, and user interface functions.

Figure 7: The ERGO-CORE components

ERGO-CORE provides map-based visualizations, tables, charts, graphs, and printable reports for result data.
It is designed to be quickly and easily extensible. When new scientific knowledge, source data, or
methodologies are discovered, these can be added to the system by developers or end users through a
standard plug-in system.

D5.1 CIRP detail design document V0.9

Grant Agreement 653824 Public Page 24

The ERGO-CORE framework implements Consequence-Based Risk Management (CRM) using a visual,
menu-driven system to generate damage estimates from scientific and engineering principles and data.
ERGO-CORE leverages other open source software, particularly GeoTools, VTK, JasperReports, JFreeChart,
Ktable, and iText.

D5.1 CIRP detail design document V0.9

Grant Agreement 653824 Public Page 25

6 System Architecture

The CIRP platform is based on a set of tools and components capable of providing resilience management
functionality arising from a dynamic climate risk approach to critical infrastructure. This section provides a
high level overview of how the CIRP functionalities and responsibilities of the system are partitioned and
then assigned to subsystems and components.

In architectural terms, the CIRP is designed as a pluggable, multi-user, and collaborative N-tier software
system that will be accessible to end users either as a Client-Server installation or as a Web start-able rich
client application. The first type of installation addresses the EU-CIRCLE scientific partners that will develop,
in close collaboration with the software engineering partners, new dataset types and analysis plugins and
thus need to have direct access to the client part (set of plugins) of the CIRP. The second type of installation
addresses the policy and decision makers and CI owners that need to access the system from a browser,
operate in diverse locations, and receive automatic software updates as these become available from the
consortium.

The high level logical architecture in terms of modules (collection of OSGi bundles) is depicted in the
following Figure. This is a layered software approach comprised around the
core of the system which is an OSGi specification implementation module (Equinox) and a Widget
framework (SWT/JFace). Each shell expands and provides additional capabilities to the inner shells. As
depicted in the outer blue shell the CIRP platform functionality will be based on the collaboration and
expansion of two frameworks: the CEF (client & server) and the ERGO-CORE (client only). Both frameworks
are as described in previous sections.

Figure 8: The CIRP modular software layers

Each of the two core frameworks provides a set of discrete functionalities that may be exploited
independently or in a collaborative manner. The ERGO-CORE framework provides the functionality related
to inventory, data and metadata management, and the ability to wrap new analysis types and execute
them on the workflow engine. The CEF framework provides funcionality including the CEF Core module, the
User Management & Roles and Access Rights modules, and the 3D GIS modules.

D5.1 CIRP detail design document V0.9

Grant Agreement 653824 Public Page 26

The CEF Core Module is the basic module that will interconnect the ERGO-CORE framework and its
functionalities with the rest of the CEF modules.

The CEF framework, the Climate Change Risk Assessment and the Collaboration modules will also provide a
set of modules able to:

 Support new types of infrastructures and links to societal functions;

 Support risk and resilience assessment models for multiple hazards;

 Support analysis and modeling of inter-dependent physical systems and non-technical systems that
are essential for the recovery of a regional area (e.g. financial, social, healthcare, public safety,
education etc.);

 Link to external software for climate hazards (e.g. flood simulators) and infrastructure operation
models, and

 Support the collaborative and interactive exchange of risk analysis information and related
scenarios

The envisaged logical architecture is depicted in the following Figure.

Figure 9: CIRP Logical Module decomposition

The following Deployment Diagram shows the physical layout of the various hardware components (nodes)
that compose a system as well as the distribution of executable environments and software components on

D5.1 CIRP detail design document V0.9

Grant Agreement 653824 Public Page 27

that hardware. The diagram depicts the actual devices (workstations, servers), along with the connections
they have to each other, and provides an effective system topology. In that topology, as illustrated below,
the location of executable components and objects illustrates where the software units are deployed and
on which nodes they are executed.

Figure 10: UML deployment diagram of the CIRP software system

The deployment diagram illustrates:

 The Application Server:

o The core of the system running all server side Business Logic. The JBoss Application Server
is the chosen execution environment. It stands between workstations and the Database,
handling requests and storing and retrieving data and performing all necessary validations
and actions. Communication with the Operator Workstations uses Enterprise Java Beans
remote method invocations (RMI) technology.

 The Messaging Server:

o Hosts the Message Broker that will support the user collaboration sessions.

 The Database Server:

o Stores all configuration and runtime data for the system. PostgreSQL is the chosen
Relational Database System. This is extended with PostGIS to support geographical data
structures and spatial queries.

 The User Workstation:

o The host device for the CIRP software. The latter will be a multi-screen Rich Internet
Application. The workstation operating system will be the Microsoft Windows (XP, Vista, 7,
8, 10) while the RIA will run on top of the Java and OSGi framework, which allows the
application to be fast, efficient, extensible, scalable and adaptable to the user needs.

D5.1 CIRP detail design document V0.9

Grant Agreement 653824 Public Page 28

7 Design Policies and Tactics

In this section we present the design polices and tactics that do not have sweeping architectural
implications and thus do not significantly affect the overall organization of the system and its high-level
structures. Nonetheless, these considerations do affect the details of the interface and implementation of
various aspects of the system. Consequently, these design policies and tactics are described in the following
Table.

 Table 3. Design Policies and Tactics

Code Decision / Strategy Description

Architectural
Design

Strategies Ref.
Codes

DPT.1 RCP version

Despite not being the latest version, RCP version 3.7 has
been selected. From version 3.7 and onwards (known as
the e4 platform), RCP contains a modified Application
Programming Interface and internal architecture and,
given that the frameworks of the design strategy ADS.7
are based on the 3.7 version, the choice for this design
policy is obvious.

ADS.6

DPT.2 Desktop GIS

GeoTools is an open source Java GIS toolkit providing
reference implementations of many Open Geospatial
Consortium (OGC) specifications. Geotools supports
many OGC standards (such as Grid Coverage, Styled
Layer Descriptor, and Filter Encoding), different
coordinate reference systems and transformations, as
well as graphs and networks. In addition, it incorporates
the Java Topology Suite with support for the OGC Simple
Features Specification - used as the geometry model for
vector features.

ADS.7

DPT.3 Analysis Codes

The CIRP will support both analysis software in the Java
language as well as software written in another language
and have built as executables (.exe). Special Java
wrappers will wrap such external processes and monitor
their execution. Initially only local analysis software will
be supported. The second version of this Deliverable will
describe any provisions for additional supported types
(e.g. remote services).

ADS.1, ADS.7

DPT.4
Graphical User
Interface

The end user graphical user interface will be modular
and expandable and will provide easy to use Wizards, a
Graphical Editing framework, Drag n Drop
capabilities,and context sensitive help.

ADS.6, ADS.7

DPT.5 Unit testing
Unit testing will be performed with the use of the JUnit
library.

ADS.7

http://www.bradapp.com/docs/sdd.html#TOC_SEC14

D5.1 CIRP detail design document V0.9

Grant Agreement 653824 Public Page 29

8 Detailed Module Design

In this section we elaborate on the modules and components presented in Section 6 with details of
definition, functions, attributes, responsibilities, and constraints.

8.1 The CEF Core Component

The CEF Core component will be the main OSGi bundle of the CIRP platform. It will function as a bridge
between the different plugins that are composed to provide CIRP platform functionality. In order to provide
this functionality, the CEF Core component provides the concept of extensions to contribute functionality to
a certain type of API by one or more plug-ins. The type of API is defined by another plug-in as an extension
point.

Figure 11: The concept of extension points.

Using this concept, the CEF Core component is responsible for the declaration of a set of interfaces. These
interfaces are the ones that will be used by other CIRP plugins in order to contact each other and
exchange details of their functionalities and data. These interfaces are known are extension points. In
implementing this approach, each of the other plugins that wants to provide the functionality of a specific
extension point must implement the equivalent interface.

Table 4. Extensions and extension points table

Term Description

Plug-in defines extension point

The plug-in defines a contract (API) with the definition of an
extension point. This allows other plug-ins to add contributions
(extensions) to the extension point. The plug-in which defines the
extension point is also responsible for evaluating the extensions.
Therefore, it typically contains the necessary code to do that.

A plug-in provides an extension
This plug-in provides an extension (contribution) based on the
contract defined by an existing extension point. Contributions can
be code or data.

The following figure visualizes the connections between the different components of the CIRP framework.
Each connection corresponds to an extension point that is defined on the core component and provides the
desired functionality between each component. In this diagram, connections are shown as arrows. The
source component of each arrow plays the role of the contributor to the specific extension point, whereas
the end of each arrow indicates extension point consumers. It is obvious that each component is able to
play either the role of extension point contributor or the role of extension point consumer, or both of these
roles (for different extension points).

http://www.bradapp.com/docs/sdd.html#TOC_SEC15

D5.1 CIRP detail design document V0.9

Grant Agreement 653824 Public Page 30

relationship, where each component that is located on the end of a dashed arrow uses the extension point
provided by the component located on the source of the arrow. Normal arrows represent a dependency
relationship. A dependency relationship is a relationship in which the functionality of the component
located at the end of the arrow is depended on the functionality (extension point) provided by component
at the source the arrow.

Figure 12: CIRP Risk Assessment Component Diagram

 Conceptual Design 8.1.1

The Core component is based on OSGi (Open Services Gateway Initiative) technology that determines the
logic components (bundles) as well as on an Extension Registry. The Extension Registry is a sub- component
of the Core component. It is the place where predefined extension points are combined with extensions.
An extension point is a statement made by a bundle to indicate that it is open to extension with new
functionality in a specific manner. This statement is declared using the XML / XML Schema language. The
life cycle of any given bundle is specified by the OSGi technology.

The concept of extension points works as follows:

 The core component declares the available extension points.

 Other components contribute the prescribed information in the form of extensions. These provide
data and/or identify classes to run and locations to access.

 The Extension Registry discovers both extensions and extensions points and links them together

 Components that act as extension point consumers are free to access and use contributed
extensions.

D5.1 CIRP detail design document V0.9

Grant Agreement 653824 Public Page 31

Figure 13: Extension point sequence diagram

 Extensibility 8.1.2

The extension point concept that is used by the Core component, and consequently by the CIRP framework,
provides the desired modularity and extensibility. Through this concept, CIRP components are independent
of each other and their exchanged functionalities are executed through the provided extension points. As a
result, the CIRP framework is open by design and easily extended to new components that will be available
in the future. Such extensions would include new analysis components which implement new analysis
algorithms. The connection between new analysis components and the CIRP framework will be enabled
through a specific extension point, the AnalysisExtensionPoint.

8.2 User Management Component

The User Management component applies hierarchical management to the users of the CIRP framework
and offers the following functions:

 Hierarchical management of users according to their organisation and their responsibilities.

 Role Management

 User Groups Management

 Management of functionalities access rights

 Display of interconnected users in real time

D5.1 CIRP detail design document V0.9

Grant Agreement 653824 Public Page 32

 Exchange of synchronous and asynchronous short text messages between users

 Hierarchical management of organisations 8.2.1

The User Management component supports the organis
structures. The user with the corresponding access rights has the ability to create, modify, and delete
services in a hierarchical manner (organization tree). The organisation tree plays an important role since it
defines the access rights to the information and associated services for each user. Each user, depending on
their position at the hierarchy, can execute the privileged scenarios and monitor the respective assets and
scenario results.

The hierarchical user management structure is displayed in a tree structure in the administration
perspective (see Section 8.8) but also to those users / roles that have access to the organisational structure
via the corresponding access right.

Each user belongs to an organisation and can only access the tree structure from his organisational
department and below. This means that each user has access only to information that corresponds to his
level and below. Similarily, the user can import and process data relevant to the access rights he has. CIRP
User Management component allows the management of an unlimited number of user groups.

 Roles and Access Rights 8.2.2

The Role and Access Rights component of the CIRP framework allow users to define and manage an
unlimited number of roles. The role management includes the configuration of the layout of the different
Views and Perspectives (see section 8.8) of the CIRP user interface that each role can access, the ordering
of the available perspectives in accordance to the number of monitors (multiple monitor configurations),
and the available functionalities that are offered per role type.

The component provides a set of permissions that permit
functionalities. Access rights are assigned by both role level and user level for greater flexibility. The
framework is able to adapt to the user permissions according to the organis
and its operating structures. Each user, depending on their role and its position in the organis
hierarchy, can monitor information relevant to their role and context.

CIRP framework will offer the following base set of access rights:

 Management of organisation services

 User Management

 Usage of specific GIS tools

 Scenario Management (creation , editing, execution)

 Execute specific analysis types

 Initiate collaboration sessions

8.3 Repository Manager Component

All data used and created in the CIRP framework is stored in Data Repositories. There are three kinds of
repositories: Local Repositories (folders on the local machine drive), Database Repositories, and Remote
Repositories. The CIRP framework transparently exposes each repository type: creating a local repository

 that contains caches of other repositories.

The component that is responsible for the management of repository types and that implements the
connection between the other CIRP framework components with the repositories is the Repository
Manager component. This component has a connection with the CEF Core component. This connection is
achieved through the implementation of the corresponding extension point that is provided by the CEF

D5.1 CIRP detail design document V0.9

Grant Agreement 653824 Public Page 33

Core. Through this extension point, each CIRP component able to access the datasets that are stored and
managed by the Repository Manager.

The Repository Manager is extended with a number of adapters. These adapters implement the
management of the datasets that are provided by each of the repositories. Using these adapters, the
Repository Manager, and consequently the CIRP framework, is agnostic to the type of the repository that is
used (local, remote, database).

Figure 14: Repository Manager

 Local Repository 8.3.1

The Repository Manager uses a predefined method to access local repositories. As mentioned previously,
local repositories are located on the local machine: formatted specifically for the manager to read them
correctly. A user can create a new local repository through the CIRP framework, but the structure and
initialization details of that repository are left for the manager. This ensures the specific repository
formatting expected by the framework.

The Repository Manager implements a dataset cache on the local filesystem in order to support the
agnostic use of repositories. This local cache will be organised according to a specific hierarchical structure.
It will contain the following sub-folders (organised based on dataset schema ids).

 cache this folder contains the datasets and properties folders:

 datasets this folder contains the actual data files for each dataset, grouped in folders by

dataset schema ids

 properties this folder contains an xml file in a custom format that defines meta-data

about each dataset, including, but not limited to

 managers this folder contains the following subfolders:

 scenario contains all the scenarios created by users in CIRP framework

 default report templates and default sets

 unit conversions, as well as some configuration files for updates and preferences.

D5.1 CIRP detail design document V0.9

Grant Agreement 653824 Public Page 34

 Remote Repository 8.3.2

A Remote Repository is used for data sharing and publishing between CIRP users. Such repositories are
typically servers that can support multiple connections from different CIRP instances. Through the CIRP
framework, users are able to synchronise remote repositories with their local repositories. The remote
repositories functionality is provided through two types of repositories, the WebDAV and the database
repository.

WebDAV repository

The most common type of remote repository is the WebDAV (Web Distributed Authoring and Versioning)
repository. It is an extension of the Hypertext Transfer Protocol (HTTP) that allows clients to perform
remote Web content authoring operations. The WebDAV protocol provides a framework for users to
create, change, and move documents on a server (typically a web server or web share). The most important
features of the WebDAV protocol include the maintenance of properties about an author or modification
date, namespace management, collections, and overwrite protection. Maintenance of properties includes
such things as the creation, removal, and querying of file information. In the CIRP framework, WebDAV is
combined with a web server in order to handle WebDAV requests directly.

Figure 15: WebDAV architecture

The CIRP framework will support connections to any standard WebDAV server as a remote repository. In
order that such remote connections can be secured, a password-protected mechanism is provided.

Database Repository

The CIRP framework will also provide a database repository. The core of this repository is a database server
- which, by definition, is a remote repository - able to store and handle geospatial data. An example of this
type of repository is the PostgreSQL database enhanced with the PostGIS extension. This type of repository
is a combination of local and remote repository, as the database system may be installed either on the local
or on a remote system. In the case of a
remotely installed database server, multiple users are able to access it as a centralised data repository.

 Data Formats 8.3.3

The Repositories will be able to store and manage datasets that are needed by the other components of
the CIRP framework. These datasets are imported to the system through a set of data files that use specific
data formats. The following section presents the envisaged file types.

Shapefile (.shp)

Shapefile is a common vector data format used by GIS programs for storing geospatial information. The
format is developed and regulated by the Environmental Systems Research Institute (ESRI), the vendor of
widely used GIS software called ArcGIS. A shapefile stores the geometry of spatial features as shapes

D5.1 CIRP detail design document V0.9

Grant Agreement 653824 Public Page 35

comprising sets of vector coordinates, in addition to attribute information regarding the features. GIS
datasets stored as shapefiles can support the following features: point, polyline, and polygon. The data type
of a shapefile is defined at its creation and a shapefile can only contain that single type of objects [11]. A
shapefile is a group of several files in the same folder, three of which are mandatory files consisting of the
essential information to make up a shapefile. [12]

Mandatory files are:

 .shp: Shape file featuring the geometry.

 .shx: Positional shape index of the feature geometry allowing quick forwards and backwards
searches.

 .dbf: Database file containing the attribute tables for each shape.

Optional files are:

 .prj: A text file containing the coordinate system and projection information.

 .sbn / .sbx: Spatial index of the features.

 .fbn / .fbx: Spatial index of the read-only features for shapefiles.

 .ain / .aih: An index of the active fields in the attribute table.

 .ixs / .mxs: Geocoding index for shapefiles.

 .atx: An attribute index for the .dbf file (for ArcGIS 8 and later).

 .shp.xml: Metadata file in XML format.

 .cpg: A file for the .dbf file specifying the code page to identify the character encoding.

This data format will be used by the CIRP framework in order to import and export vector GIS data, such as
locations and features of assets, a water network, etc.

A sample water network consisting of shapefiles is given in figure below. The figure is displayed as a result
of overlaying three shapefiles. In the figure, red, green, and white objects representing network facilities
are in point data format; black objects representing water pipes are in polyline data format; and the grey
area representing an administrative unit is in polygon data format.

D5.1 CIRP detail design document V0.9

Grant Agreement 653824 Public Page 36

Figure 16: Sample shapefile data for point, polyline, and polygon formats. [12]

ASCII raster (.asc)

Raster data is used in field-based computational models where space is divided into regular units with fixed
locations, most commonly into square grids. Field values can be gathered via either remote sensing or map
algebra in which the grid units contain spatial variables for the locations they fall on.

ASCII raster is a GIS raster format to represent data in a grid structure defining the geographic space as
equally sized square cells arranged in rows and columns. Each cell stores a numeric value representing an
attribute related to the geographic space of that cell referenced with a pair of X and Y coordinates.

Figure 17: Sample structure of an ASCII raster dataset.

This type of data format will be used by the CIRP framework in order to import and export data related to
the spread of a specific event in space, such as the values of maximum water depth in the case of a flood
simulation.

D5.1 CIRP detail design document V0.9

Grant Agreement 653824 Public Page 37

Extensible Markup Language (.xml)

The eXtensible Markup Language (XML) is often used to represent data so that it can be shared among
different kinds of applications and operating systems. XML provides an efficient and effective way to store,
retrieve, and exchange information between peers. The XML format allows users to define their own tag
set to describe data. This flexibility enables users to develop their own standard tags particular to their area
of interest and to therefore make data available to other applications. Applications refer to the tag set in
order to extract information from the XML document [12].

An XML document is structured in a nested manner that implies the hierarchy between tags. To illustrate
the data structure of an XML document, an example of the ERGO-CORE fragility mapping file is given in the
following figure.

Figure 18: Sample structure of a fragility mapping XML document. [12]

The <mapping-dataset>, and <match-filter-map> tags in the XML document contain information about all
matching rules for the seismic damage analysis of a buried pipeline. The <property-match> tag contains the
rules for one individual match within <filter> and <success-value> tags, which provides the selection filters
and matching fragility IDs for the filtered elements, respectively. The tag <statement> sets the filter
statements by defining rules such as pipe diameter, pipe type, pipe joint, or corrosivity conditions. The
filtered out pipes that meet the conditions must be matched with a specific fragility or damage function.
The mapping entries, which are provided in <entry> tags under <map>, define the assigned fragility IDs to
the selection.

Similar mapping files will be defined by the project partners and will map the fragilities of the various CIRP
analyses with the inventory and asset attributes.

Comma-separated values (.csv)

Comma separated value (CSV) format is typically used to exchange and convert data between spreadsheet
or database applications. While numerous implementations are present for the format, there is no formal
specification, resulting in a wide variety of interpretations. This causes considerable differences among
implementations. Generally each record is located on a separate line, delimited by a line break. An optional
header may be provided as the first line with the same format as the record lines. The header must contain
names corresponding to the individual fields in one record and must contain the same number of fields
with the records. Each line must contain the same number of fields throughout the file and the last field in
each record should not be followed by a comma [13]. An example for a CSV document is given with an
interdependency table shown in the following figure [12].

D5.1 CIRP detail design document V0.9

Grant Agreement 653824 Public Page 38

Figure 19: Sample structure of interdependencies in a CSV document [12]

8.4 GIS Engine Component

The CIRP framework will offer advanced geospatial functionality through the set of Open Geospatial
Consortium compliant open source libraries known as GeoTools. By building on top of the open source (OS)
libraries, such as the Java Topology Suit (Vivid Solutions), libraries,
and the GeoAPI, GeoTools leverages the best of these lower level libraries to provide a mid-level library of
functions that simplifies the construction of complex spatial data processing applications, while hiding the
complexities of data sources, feature models, and projections from the end user.

Figure 20: GeoTools components

The GeoTools libraries form in which each layer of functionality builds on the ideas
and concepts defined in the previous one. The general architecture is depicted in the figure above. The
GeoTools library consists of a set of sub-components able to provide functionalities related to the
supporting of additional data formats, different coordinate reference system authorities, and much more.

The GeoTools library provides support for many GIS vector formats including ESRI Shapefile, GML, WFS,
PostGIS, Oracle Spatial, ArcSDE, MySQL, GeoMedia, Tiger, VPF, and MIF. It also gives support for several
raster formats including ESRI ArcInfo ASCII Grid Format, GRASS ASCII Grid Format, geo-referenced image
format, and OGC WMS.

D5.1 CIRP detail design document V0.9

Grant Agreement 653824 Public Page 39

Figure 21: GIS component.

The CIRP framework will utilize the GeoTools functionalities in order to fulfill the following requirements:

1. The support for GIS format files, such as the raster and ascii grid format files. The support of GIS
format files, such as ascii grid and raster files, is needed in order to create the datasets. These files
may contain information that is required by analysis procedures and may include data such as
building assets, networks, hazards, etc.

2. The provision of GIS functionalities, in order to execute the desired analysis procedures. Many
Analysis components will base their analysis procedures on GIS functionalities, such as coverage
and topology computations.

3. The provision of 2D Map rendering functionality, in order to visualize the analysis inputs and
outputs. The Output component uses the 2D rendering functionalities provided by the map
component and users will be able to select 2D GIS preferences, such as styling, data aggregation,
layer ordering, attribute filtering, grid overlays, and coordinate transformation.

 Conceptual Design 8.4.1

Currently GeoTools consists of three major modules:

 Main provides the key functionality of the library, including the feature model, spatial
referencing, data handling, and rendering packages.

 Plugins provides interchangeable parts of the library, which can be added or subtracted as
needed by end user programs. This includes all of the actual data source packages and
implementations of spatial referencing databases.

 Extensions provides add-ons to the library that give additional functionality not needed for simple
programs, but which might be useful for some users. For example, the Colorbrewer tool and graph
functions are contained in extensions [16].

Core Functionality

The core functionality of the GeoTools library is defined in the main module. This is where the internal
model of GeoTools is established. It is here that the feature model is defined in a way that allows all parts
of the program to agree about what a feature is and how it should be represented. This section of the

D5.1 CIRP detail design document V0.9

Grant Agreement 653824 Public Page 40

library also defines how to read and write data, how to create filters that can be applied to data streams in
order to select specific features, and how to style a feature in order to render it [16].

 Feature Model

The feature model lies at the heart of the GeoTools library. A feature is a representation of a geographic
object (e.g., a road, river, or house). In GeoTools a feature is stored as an array of Java objects that
represent the feature attributes. One attribute is always the geometry (i.e., its representation in space) of
the feature. The other attributes can be any type that is required by the feature being modeled. A feature is
defined by a Feature-Type object, which represents the schema of the feature. This allows a program to
determine what type of object an attribute should be decoded or encoded as when loading or unloading
data from features. The feature class provides helper methods that provide the user with a convenient way
to work with the attributes. Since an attribute can be any geographic object, features can even contain
information about other features, allowing containment to be modeled by the system.

 Data Stores

GeoTools provides an abstract datastore concept that allows an application developer to access data from a
variety of data sources without having to worry about the actual implementation details of each data
source. For example, data stored in an ESRI shapefile or a PostGIS database is accessed in exactly the same
way once the datastore has been opened. The use of a factory design pattern allows developers to pass a
request for a new object to the factory class, rather than needing to hardcode the reference to the class.
The factory can then look up a specific implementation and return a concrete object that has been
determined at runtime to the program. By providing a factory system to access plug-in datastores,
GeoTools allows programs to be completely agnostic to data sources, provided that a specific data store
has been implemented for the data source required.

 Filters

GeoTools implements the OGC filter specification [15], which defines three groups of filters:

 Spatial filters, which involve a geometry element and a spatial relationship.

 Comparison filters, which compare attributes of features with other expressions or attributes.

 Logical operators, which allow the joining of other types of filter.

 Styling and Rendering

Styling and rendering are the means of converting the abstract representation of a geographic feature into
an actual drawing of a map on the screen or on paper. The GeoTools styling system is based on the OGC
Styled Layer Description (SLD) language [15]. The GeoTools styling package allows programs to control the
following characteristics:

 color of lines and fills

 size and type of symbol for points

 text properties (e.g., position, font, color) for labels, and

 rules for all above based on feature attributes.

 Spatial Referencing

GeoTools supports almost any type of known geographic projection. It provides a collection of predefined
projections as defined by the European Petroleum Spatial Group (EPSG). It contains functions that are
capable to convert geometry objects from one projection to another. Additionally, GeoTools provides query
projection methods such as valid geographic area, ellipsoid, and so on.

D5.1 CIRP detail design document V0.9

Grant Agreement 653824 Public Page 41

8.5 ERGO-CORE Components

The ERGO-CORE framework provides an extensible set of components for workflow based geospatial risk
assessment analysis, scenario management, and tabular and geospatial data and metadata management.
The following subsection presents the main design concepts. As the ERGO-CORE has been initially
developed for seismic analysis, the CIRP will re-use and extend the generic functionalities in order to be
used as the building blocks in the climate change risk assessment domain.

 Conceptual Design 8.5.1

The methodology that is used by the ERGO-CORE framework can be divided in two main parts: structural
model and topological model. Inventory, hazard, and fragility definitions are within the scope of the
structural model. The topological model is the aspect within which dependency and post-event
serviceability analyses are carried out through topological network connectivity and flow models.

Performance assessment of interdependent networks requires utilization of two separate models used
consecutively: a structural model for damage estimation and a topological model for connectivity and flow
analyses based on the output of the structural damage assessment (figure below). The inventory datasets
must be provided in compliance with the requirements of both models since the output of the structural
assessment is used as an input in interdependent performance assessment.

Figure 22: Interdependent Network Performance Analysis flowchart [12].

In the structural model, damage assessment of the inventory items are carried out based on specified
hazard and fragility information. Each inventory item is assigned to corresponding fragility functions based
on specific attributes. Fragility relations are used to estimate the expected damage based on the
corresponding hazard type and value. The estimated damage is then used for failure assessment of network
components (for network based analysis) in the succeeding steps of the analysis.

The Topological model is where the networks are modelled based on connectivity and flow relations.
Failures of components are determined based on structural damage and interdependency effects exposed
through the execution of numerical simulations. Re-structured networks with their surviving components
are analysed by applying Monte Carlo Simulation techniques to determine the system performance based
on reductions in connectivity and flow. System performance is the quantification of the effect of physical

D5.1 CIRP detail design document V0.9

Grant Agreement 653824 Public Page 42

damage on the network flow and system serviceability. Topological analysis estimates the effects of
hazards on the end-users by quantifying the amount of service loss for each individual network [12].

Structural Damage Model

Structural damage modelling is the initial step in the performance assessment of interdependent lifeline
networks and CIs. All three elements (hazards, inventory, fragility) of structural damage assessment are
vitally important for the achievement of accurate assessments. Thus, accurate definitions and utilizations of
inventory, hazard, and vulnerability parameters are equally important [17].

Hazard and vulnerability are the agents that define the natural hazard risk. Reduction of risk can be
achieved by reduction of vulnerabilities through modifications and improvements in the inventory.
Vulnerability of a man-made environment is almost entirely dependent on the human factor, whereas
hazard is a natural phenomenon and cannot be reduced nor prevented [12, 18].

 Hazard

Hazard is the quantification of an event without any reference to human or structural loss, simply
depending on the characteristics of the selected scenario. Each hazard type has a set of characteristics
parameters that defines the impact of this hazard on societies of structural inventories. For example, in the
case of flood hazards, these parameters can be maximum water depth, the water velocity etc.

 Fragility

Structural damage levels are estimated through the application of fragility functions, which give the
probability that a limit state is exceeded, or by damage functions that indicate the amount of expected
damage, given an input parameter representing a level of hazard. Three approaches can be employed to
develop these functions: empirical, theoretical, and judgment-based. Empirical relationships are obtained
by estimating observed damage from a site or from laboratory experiments through regression analysis.
When empirical data is unavailable or insufficient, modelling the systems with known or estimated
capacities provides a theoretical approach. Judgment-based functions, based on expert opinion, are
developed in the absence of empirical data and theoretical models [19], [20].

Topological Model

Drawing on in-depth definitions of inventory attributes, finely detailed mappings of state-of-the-art fragility
information, and elaborate hazard maps developed using modern simulation tools with detailed site and
source definitions result in detailed identification of critical components of lifeline networks. However,
knowing the physical state of a network is not sufficient to make predictions regarding the impact of its
operational loss after disruption. Interdependent performance analysis tools for topological networks can
be employed to simulate the post-event conditions of the analysed networks by applying connectivity and
flow algorithms. With the interdependent approach, lifeline networks can be modelled as a mutually
dependent system of systems where the state of one network is influenced by its dependencies.

Topology, in geographic information systems, defines the interaction between objects independent from
their geometry. One of the most significant outcomes of topology in a GIS is to be able to perform network
analyses, neighbourhood analyses, and similar related analytical processes without the requirement for
specific spatial information.

 Data Structure

Topological data structures provided by modern GIS software support three main functions: connectivity,
area definition, and contiguity. These functions are in turn supported by three basic topological data
structures: arc-node, polygon-arc, and left-right. The arc-node structure will be used in CIRP to handle
connectivity models such as road, transportation, utility lifelines, and telecommunication networks where
the order of links and connecting nodes on a route is important. The polygon-arc structure is the data
structure used to store area definition in the database. This defines the relationships between areas and

D5.1 CIRP detail design document V0.9

Grant Agreement 653824 Public Page 43

surrounding arcs such as coastlines or borders. The left-right structure provides contiguity (neighborhood)
functionality where information on polygons surrounding neighboring polygons is stored. This enables
representation of relationships such as administrative units which are neighbors to other units, or buildings
that have sides facing to a road, etc.

The principles of geospatial topology are based on graph theory. The networks must be represented as
directed graphs in order that an analysis tool may process them correctly. A graph can be described as a
pair G = (V , E) of sets where V is defined as the set of vertices, and E is defined as the set of edges. A graph
is defined as connected if any two vertices of a graph are always connected with a path. Moreover, if every
edge in a graph is assigned an initial and terminal vertex, defining all flow directions, such a graph is defined
as a directed graph. Analysed networks are built as directed graphs. Electric power network, potable water
network, and natural gas lifeline systems are examples of CI networks that are able to be represented as
directed graphs by the CIRP framework. CI networks generally consist of buried pipelines, power lines,
power plants, substations, water wells, pumping stations, water tanks, natural gas pressure regulator
stations, gate stations, switching stations, junction units, and other similar elements.

Each node in a topological network, as employed to represent a CI network, is assigned to either one of
three types according to their roles in the physical network: generation, intermediary, and distribution.

 Generation Nodes: These are the network facilities where network flow is originated from. Supplier
facilities like water wells in potable water networks, power plants in electric power networks, and
gate stations in urban natural gas networks are defined in the topological model as origin nodes.

 Distribution Nodes: These are the discharge nodes of the networks where the flow is supplied to
the end users. Transformers in electric power distribution networks and water tanks in water
transmission networks are defined in the topological model as destination nodes.

 Intermediary Nodes: These are the nodes in the network without any generation or discharge.
Incoming flow is transmitted without any change. Pressure regulator pumps and water tanks in
water distribution networks, pressure regulator stations in natural gas networks, and all types of
junctions are defined in the topological model as intermediary nodes [12].

 Interdependent failure mechanism

The interdependency mechanism can be explained with an example of a power and a water system given in
the following Figure. The power distribution nodes provide the electric power requirements of water
nodes. In the given system, power and water systems operate simultaneously, but not independently. Each
connection between power and water nodes represents a dependency and is quantified with a dependency
level. Dependency levels determine the functional behavior of water network nodes in case the failure of
power distribution nodes supplying electricity to them.

D5.1 CIRP detail design document V0.9

Grant Agreement 653824 Public Page 44

Figure 23: An example for illustrating network interdependency [12]
Failure of a network node can either be structural or operational. Operational failure can further be divided
into two as non-functionality of a node due to loss of connectivity within the network and non-functionality
due to failure of all feeder electric power nodes. This condition implies that a node can still fail due to
interdependency effects although being structurally undamaged. [12]

 Network performance measures

Interdependent system behaviour can be assessed by simulating the system response. Based on hazard
damage assessment results and interdependency definitions between systems, the post event states of the
networks may be obtained and, subsequently, system reliability can be assessed by application of the
appropriate simulation models (e.g. Monte Carlo). In order to measure the functional loss of a system when
some of the components are likely to be dysfunctional, two performance measures are defined that
quantify those losses: Connectivity Loss (CL), and Service Flow Reduction (SFR). These measures assess the
network performance with metrics depending on the topological settings of the network, or with more
detailed metrics depending on supply, demand, and flow patterns additional to the topological settings.

1. Connectivity Loss (CL) measures the ability of every distribution node to receive flow from
generation nodes [21]

2. Service Flow Reduction (SFR) determines the amount of flow that the system can provide
compared to the demand before the disturbance [22].

 Scenario Manager 8.5.2

The scenario manager will be responsible for the management of the scenarios. A scenario is defined as the
process undertaken to calculating the impact of a specified hazard in a set of assets in a predefined area.
The Scenario Manager component will be responsible for keeping track of all objects associated with a

simultaneously, and each scenario is independent. A scenario also keeps a record of all analysis workflows
associated with that scenario
well as any settings applied to the datasets (e.g., styles, visibility, etc.) and any datasets that can be
visualised.

The scenario manager will offer the following functionalities:

 Creation of a new scenario

 Editing an existing scenario

 Deleting an existing scenario

D5.1 CIRP detail design document V0.9

Grant Agreement 653824 Public Page 45

 Provision of datasets to scenarios

 Execution of certain analysis

 Display on the map the scenario object that can be rendered

Data Sources

The repository component is used as the data source for the scenario manager. As a result the repository
manager can provide the required datasets for each one of the scenarios. The common procedure is that
the scenario manager creates a request with all available datasets for specific types of data (based on the
metadata) and the repository returns the specified type of data from all available positions.

 Analysis Manager 8.5.3

The Analysis Manager is the base component where all analyses are registered. CIRP developers can add a
new analysis by registering a new plug-in with this extension point. When a user creates a new scenario
through the workbench, they are prompted to define an optional region of interest, make an analysis
selection, and identify the inventory data. The Analysis Manager then attempts to populate selected
analysis fields with the appropriate data types and default input parameters, and in some cases, the user
will need to provide values for the parameter inputs. If a dataset for an analysis field (e.g. Water Treatment
Areas) is not available in the us the option to search all registered
repositories to find an appropriate dataset, or to create a new dataset using an analysis. If the user chooses
to create a new dataset, the Analysis Manager will first execute the analysis necessary to create the
dataset, and then use the result as an input into the original analysis.

Hazard Component

In the context of CIRP a hazard analysis denotes a natural hazard simulation service that will be executed
inside the CIRP platform. Hazard analyses are configured in the Workflow Analysis Editor view. The latter
will provide users with the ability to load and execute custom scenarios. The user must provide all required
information related to the event that will be simulated. When all data is provided, the user will be able to
execute the hazard analysis.

The Workflow Analysis Editor view takes advantage of the Graphical Editor Framework (GEF) and the Zest
library. These Eclipse libraries provide the ability to easily create intuitive graphical representations of data
which is used by the analysis manager; a workflow-type graph of the analysis is generated and updated as
the user interacts with the analysis. The coupling of a form-based user interface with a visual
representation of the workflow provides the user with multiple options for managing their analyses.

Vulnerability Component

The functionality of the vulnerability component is based on fragility datasets and, therefore, on fragility
functions. A fragility function represents the cumulative distribution functions of the capacity of an asset to
resist an undesirable limit state. Capacity is measured in terms of the degree of environment excitation at
which the asset exceeds the undesirable limit state. For example, a fragility function could express the
wind factors that a building structure can tolerate before it collapses. Users are able to import new fragility
datasets according to their needs and their access rights.

For each asset (building, network link, and/or node), the user has to map fragilities with the structure type
in order to identify the necessary parameters. The discrete probabilities of damage states are obtained by
taking the difference between adjacent curves. In the following figure, Flood fragility functions for water
transportation pump stations are depicted to illustrate this point.

D5.1 CIRP detail design document V0.9

Grant Agreement 653824 Public Page 46

Figure 24: Flood fragility functions for water transportation pump stations [23]

CIRP users will be able to upload their own fragility curve dataset by following a graphical interface
procedure. Fragility curve datasets must be be provided as fully compliant *.xml files similar to:

Figure 25: Extract of the fragility dataset provided by ERGO-CORE framework

Analysis Execution Engine

In order to execute an analysis, the analysis component compiles the analysis chain into a self-contained
script. The implementation of the script will be built using Ogrescript. Ogrescript is an XML-based scripting
language developed at NCSA that runs inside of a container called ELF. Ogrescript is also an Eclipse RCP
application; so it is easily customised and adapted to run as a plug-in inside the ERGO-CORE framework.
The extensibility of Ogrescript was one reason it was chosen for executing framework analyses. The primary
reason, however, was to meet an important design goal that the execution of a single task (e.g. computing
the damage of an asset) should be decoupled from the execution of an entire analysis (e.g. computing the
hazard risk an area).

This execution plug-in will allow users to focus on analysis requirements individually and provides the
proper separation from the execution engine. Thus, the developer of a new task does not need to
understand the inner workings of the mechanism behind the iteration across an entire dataset. It also
allows new and more advanced iteration and scaling functionality to be deployed without affecting the
domain-focused analyses. The scripts generated by the analysis component can be exported and stored in a
human- and machine- readable XML format. This ability provides the user a history of the run, as well as
the ability to execute the script elsewhere.

D5.1 CIRP detail design document V0.9

Grant Agreement 653824 Public Page 47

The main reason Ogrescript was developed was to manage scientific software on supercomputing clusters
and to enable an analysis to run as a standalone command line client that can be executed on many
different operating systems and architectures. Ogrescript provides the ability for users to develop analysis
workflows in an intuitive graphical user interface on their desktop and execute the workflow in an
environment that makes the most sense for the scale of a use case; running on a local machine or on a
remote cluster or supercomputer.

 Figure 26: Ogrescript XML example

The following figure displays a brief overview of the Analysis Execution Engine procedure. A number of
analysis progress listeners are registered with the Analysis Manager. When a new analysis is sent for
execution through the Analysis Manager, an analysis ogrescript containing all the input/output datasets
and additional parameters specified by the user during analysis creation is formed. This ogrescript is then
fed into the Analysis Execution Engine, which combines the analysis ogrescript with host information (to
load and store the specified datasets) as well as scheduling services (for load balancing) to generate an
ogrescript executable. This base class of this executable implements the ELF-internal interface IScript. In
detail, this executable consists of a payload, or script, along with initial properties, input and required
output.

ELF is a transient, compute-resource-resident container for running such payload scripts. The ELF wrapper
serves as a container whereby the execution of the aforementioned ogrescript executable is transformed
to an ELF executable and monitored, with failures or success being reported back to the Analysis Manager
through the registered listeners. While the ELF executable is being executed, analysis execution listeners
notify its status to the Analysis Manager, triggering the update of the progress bar on the display screen
accordingly. Internally, the analysis included in the correspondent scenario (.xml) gets updated too, and
saved in the repository after passing through the Analysis Manager.

D5.1 CIRP detail design document V0.9

Grant Agreement 653824 Public Page 48

Figure 27: Analysis Execution Engine example

8.6 Output Manager

The Output Manager will provide a number of tools for displaying the output of an analysis. In detail, the
output can be rendered using different formats, such as maps, charts, reports or tables. The technologies
used for each output format are:

 2D map

 3D map

 JFreeChart (charts)

 JasperReports (reports)

 Ktable / NatTables (tables)

Below follows a brief description of each technology per output format:

 2D Map Plugin 8.6.1

The rendering for 2D Maps will be implemented using the GeoTools library. GeoTools functionality is
described previously in Section 8.4. GeoTools is used for dataset visualisation in 2D, supporting different file
formats like shapefiles (.shp), rasters (.asc), .csv, .xml , .txt, and compressed files (.gz, .zip). The 2D Map
component of GeoTools will render each loaded spatial dataset and will support different styling based on
SLDs. Other supported actions include user-definable zoom through on-map tools or by mouse-drawing an
bounding box to zoom to (i.e. drawing a rectangle).

 3D Map Plugins 8.6.2

The 3D Visualization component will be based on the various 3D Map components of the CEF that offer, to
users, the capability to navigate through three-dimensional landscapes created by the combination of aerial
and satellite imagery, elevation data, and other levels of two-dimensional or three-dimensional

D5.1 CIRP detail design document V0.9

Grant Agreement 653824 Public Page 49

information. Users can import vector layers, images and elevation data from multiple sources, to add
information in landmarks such as image tags or text, buildings, point-cloud models, two-dimensional and
three-dimensional entities, and default routes from GIS files and databases. Empowering a user to import
unique or proprietary information into a three-dimensional map creates an exciting and interactive
application that supports highlighting of specific elements, their function, their relationships, and proximity
aspects with a separate area display. Extension points for 3D map services will be adapted for the Output
Manager

 Chart Plugin 8.6.3

Charts are generated using the JFreeChart library. JFreeChart is an open-source Java chart library that
supports many output types, including Swing and JavaFX components, image files (including PNG and JPEG),
and vector graphics file formats (including PDF, EPS and SVG). In the CIRP framework, JFreeChart will be
used to display charts of an analysis input or output datasets and various statistics. Charts can be zoomed
for further details, and are customizable in terms of changes in properties and display. Charts can be
rendered as bar charts, stacked bars charts, line charts or pie charts.

 Report Plugins 8.6.4

The Report plugins will provide the ability to visualize scenario results in a report form. This tool consists of
a visual report designer and a runtime component for Java. The visual report designer is responsible for the
design of the report template, whereas the runtime component is responsible for the visualization of
scenario results according to the predefined templates. The template of these reports consists of lists,
charts, crosstabs, forms and documents, and compound reports with multiple features and can be
embedded on rich client applications. Information gleaned from such embedded Reporting tools may be
used in both real-time decision-making and to track and analyse historical data. These reports are able to
be exported to different file formats, such as pdf, .excel, html, xml, csv, and text.

Figure 28: Reporting Tool Architecture

 Tables 8.6.5

Tables are also used for result visualization purposes. Such tables are based on the NatTable framework.
NatTable is a framework to create table, grid, and tree controls. It is designed to handle very large data sets
and is as flexible as possible in terms of functionality and styling. NatTable provides a user-orientated table
experience including sorting, filtering, grouping, and fixed/frozen columns and rows.

8.7 User Collaboration Components

The user collaboration components in CIRP are a set of OSGi bundles that will support the initiation,
control, and participation in collaborative user sessions. The goal here is to allow users to navigate
simultaneously and synchronously into the CIRP map based environment and to then exchange information
related to analysis results, messages, and annotated map areas where - for instance - risk resilience
adaptation measures should be considered. The following functionality will be provided:

 A user will be able to create a collaboration session and invite other CIRP users

 CIRP users invited are notified via the message broker component

D5.1 CIRP detail design document V0.9

Grant Agreement 653824 Public Page 50

 Once a user participates in the collaborative session they are able to select scenario results to be
exchanged with the session user group. In addition a set of tools for map annotation, guided map
navigations, and chat are activated.

8.8 Graphical User Interface

This section presents in brief the CIRP Graphical User Interface (the detailed UI as designed will be
described in the second iteration of this deliverable). The CIRP GUI will be based on the CEF workbench
which consists of a set of perspectives, views, toolbars and popup wizards. A perspective is a set of Views
organised in the application window in an appropriate manner. Each perspective determines the visible
actions and views within a window. A View when visible takes a part of the perspective, it can be minimised
(in any of the right, left and bottom toolbars) or it can be extracted from the main window (detached
View). In addition each View can contain one or more controls or buttons in the view bar area. The
following perspectives are envisaged:

 Administrator

 Scenario Manager

 Collaboration

 Help

The main toolbar will contain a number of buttons that activate each of the perspectives. The administrator
perspective will only be visible to the Administrator user role.

Figure 29: The CIRP UI components

-n-drop functionality will be implemented throughout the user interface as it provides a quick and

easy mechanism for users to re-order and transfer data within the CIRP application views (repository, map,
scenario management, etc.).

In addition, context sensitive help will provide the ability to perform a single search in order to find
information from any number of sources (federated information search).

Finally cheat sheets will guide users through tasks. A task is broken down into steps and presented to the
user one step at a time, and the user checks off the steps as he/she completes them. Cheat sheets will
come in two forms: simple (one task, several steps), and composite (many sub-tasks, each having many
steps).

D5.1 CIRP detail design document V0.9

Grant Agreement 653824 Public Page 51

9 Conclusions

The CIRP detailed design as presented in this Deliverable has the aim of defining the CIRP architectural
elements and identifying both the scope of the individual components and services and the context in
which they will operate.

The CIRP has been designed as a collaborative modelling environment where new risk assessment and
geospatial analyses can extend the analysis workflow and where multiple scientific disciplines can work
together to understand interdependencies, validate results, and present findings in a unified manner. This
provides an efficient, pragmatic, and effective solution that integrates existing modelling tools and data
into a holistic resilience model in a standardised fashion.

The detailed CIRP design offers an environment for what-if scenario analyses with the selection of model
chains, climate data, and CI inventories in order to calculate damages and assess the resulting risk. The CIRP
platform as designed provides a user friendly environment to enable the intuitive design and analysis of
modelling scenarios created for any combination of climate hazard and CI assets. In this way, users are able
to understand the impact of various adaptation strategies or to quantify the potential impact of a
catastrophic event on society.

The CIRP extensible modular architecture can be shared across multiple communities to enable CI policy
maker, owners, and scientists to leverage existing software analysis types and algorithms, inventory types,
and fragilities while not binding the underlying platform to a particular scientific domain. This pluggable,
open architecture is what will allow CIRP to support a wide variety of domain specific functionality isolated
in plugins; to repackage different functionalities as a starting point for new applications, and to be
extended to add new analytical capabilities in the future.

D5.1 CIRP detail design document V0.9

Grant Agreement 653824 Public Page 52

10 Bibliography

[1] Understanding risk. Review of open source and open access software packages available to quantify risk
from natural hazards

[2] ERGO Framework (Multi-Hazard Assessment, Response and Planning) http://ergo.ncsa.illinois.edu/

[3] FEMA & NIBS (1999) HAZUS99 user and technical manuals, Federal Emergency Management Agency
Report: HAZUS 1999,Washington D.C.,USA.

[4] FEMA (2003) HAZUS-MH Technical Manual . Federal Emergency Management Agency, Washington, DC,
U.S.A. Giovinazzi S.

[5] Crowley H., Colombi M., Crempien J., Erduran E., Lopez M., Liu H., Mayfield M., Milanesi M. (2010)
GEM1 Seismic Risk Report: Part 1, GEM Technical Report 2010-5, GEM Foundation, Pavia, Italy.

[6] Crowley H., Cerisara A., Jaiswal K., Keller N., Luco N., Pagani M., Porter K., Silva V., Wald D., Wyss B.
(2010) GEM1 Seismic Risk Report: Part 2, GEM Technical Report 2010-5, GEM Foundation, Pavia, Italy

and SPA Risk LLC, Denver CO USA, 11 February 2016

[8] Open Geospatial Consortium, Inc., Retrieved September 21; website: http:// www.opengeospatial.org/

[10] T. McLaren, C. Navarro

Honolulu, Hawaii, 2009

per. Environmental Systems Research Institute,
California.

Department of Geodesy & Photogrammetry Engineering, Geomatics Engineering Programme, November
2011

[13] R. Shafranovich

02-070, http://portal.opengeospatial.org/files/?artifact id=1188 , 2002

-095
http://www.opengeospatial.org/standards/filter , 2004

-169), Springer Berlin
Heidelberg, 2008

[17] J. Betbeder-Matibet,

[18] A. S. Elnashai and L. Di Sarno Fundamentals of earthquake engineering.

[19] K.A. Porter and A.S. Kiremidjian, Assembly-based vulnerability of buildings and its uses in seismic
performance evaluation and risk-management decision-making. Stanford, CA: John A. Blume Earthquake
Engineering Research Center, 2001

http://pbadupws.nrc.gov/docs/ML1435/ML14350B131.pdf

http://ergo.ncsa.illinois.edu/
http://www.opengeospatial.org/
http://www.opengeospatial.org/standards/filter

D5.1 CIRP detail design document V0.9

Grant Agreement 653824 Public Page 53

[21] Y.S. Kim, B. Spencer, and A.S. Elnashai, Seismic Loss Assessment and Mitigation for Critical Urban
Infrastructure Systems. Urbana: NSEL Report Series, NSEL-007. University of Illinois at Urbana-Champaign,
2008

[22] Kim, Y. S., Spencer, B., Song, J., Elnashai, A. S., and Stokes, T. (2007). Seismic Performance Assessment
of Interdependent Lifeline Systems. Retrieved from https://www.ideals.uiuc.edu/handle/2142/8927.

[23]
http://www.victoria.ac.nz/sgees/research-centres/documents/riskscape-flood-fragility-methodology.pdf

https://www.ideals.uiuc.edu/handle/2142/8927

