MET(NO) UNEXE(UK)
CEREN(FR) ARTELIA(FR)
XUVASI(UK) EUC(CY)
HNMS(GREECE) SATWAYS(GR)
NCSRD(GR)
GMU(PL) ADITESS(CY) TORBAY(UK)
DHMZ(HR) D'APPOLONIA(IT)
MRK(DE) KEMEA(GR)
USAL(UK) VVG(HR)
DUZS(HR) FRAUNHOFER(DE)

MET(NO) UNEXE(UK)
CEREN(FR) ARTELIA(FR)
XUVASI(UK) EUC(CY)
HNMS(GREECE) SATWAYS(GR)
NCSRD(GR)
GMU(PL) ADITESS(CY) TORBAY(UK)
DHMZ(HR) MRK(DE) KEMEA(GR)
USAL(UK) VVG(HR)
DUZS(HR) FRAUNHOFER(DE)

Opening Conference

Rome, October 20th, 2015

EU-CIRCLE description

Project objectives

Derive an innovative framework for supporting the interconnected European Infrastructure's resilience to climate pressures.

Develop and validate a Climate
Infrastructure Resilience Platform (CIRP)
that will:

- assess potential impacts due to climate hazards,
- provide monitoring through new resilience indicators and
- support cost-efficient adaptation measures.

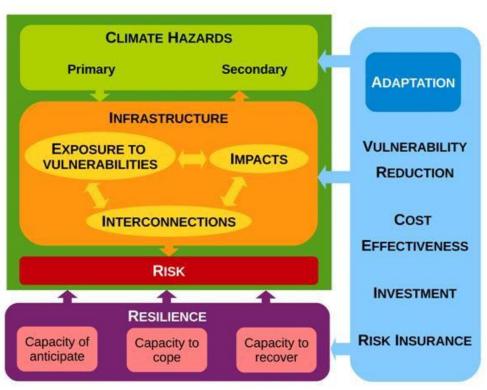
Project sector: Transport , Energy, IT, Telecommunication, Health, Water, Public Administration, Chemical

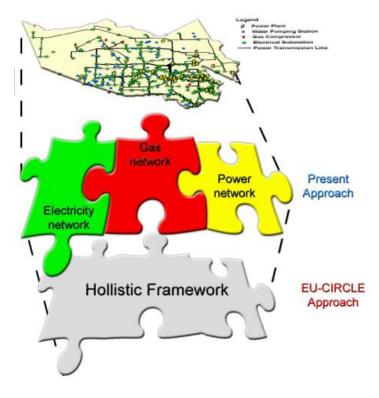
Project topics: Climate Change, Critical Infrastructures, Adaptation, Risk Assessment, Interdependencies and Cascading Effects

Project duration: 36 months

EU-CIRCLE outcomes

The EU-CIRCLE main outcomes are:


- Methodological framework for assessing risk and resilience of interconnected criticial infrastructures to climate change impacts – (guidelines) - expected for month 12
- CIRP critical infrastructure resilience platform (software) modeling of different climate hazards & risk propagation & resilience / adaptation metrics expected for month 30
- Moving towards standardization of climate risk and resilience to interconnected CI (data, meta-data, models) – guidelines – common format and interfaces – expected for month 32



EU-CIRCLE description

In two images:

Opening Conference Rome, October 20th, 2015

EU-CIRCLE target stakeholders

The EU-CIRCLE target stakeholders are:

- CI National auhtorities: have a risk informed tool for making the optimal long term decisions on interconnected CI resilience
- **CI owners / operators**: collaborative tool for determining and assessing risk and resilience due to climate hazards
- Regional / Local authorities : introduce CI resilience planning into larger societal resilience activities
- Meteorological / Climatology community : Linked to new challenges and uses of climate area
- Scientific community: open source software that may accommodate multiple models and standards into a common platform.

H2020 identified opportunities

H2020 identified opportunities to exploit EU-CIRCLE main outcomes

- **H2020 SC5-08-2017**: Large-scale demonstrators on nature-based solutions for hydro-meteorological risk reduction
- H2020 SC5-01-2016-2017: Exploiting the added value of climate services

Other financing opportunities considered

- LIFE + on climate
- DGECHO

EU-CIRCLE Validation

Case Study 1: Extreme Dryness and forest fires on electricity and transport

networks

Lead Partner: ENTENTE POUR LA FORÊT MÉDITERRANÉENNE

Case Study 2: Storm and Sea Surge at a Baltic Sea Port, Gdynia Poland

Lead Partner: AKADEMIA MORSKA W GDYNI

Les mésures d'urgence à la fin 2010

Tambillo de la company de la compan

Circuit à: — 400 000 volts — 225 000 volts — 150 000 volts

• Transformateur du 400 000 volts vers niveaux inférieurs

• Transformateur du 225 000 volts vers niveaux inférieurs

• Transformateur du 225 000 volts vers niveaux inférieurs

• Transformateur du 225 000 volts vers niveaux inférieurs

• Transformateur du 225 000 volts vers niveaux inférieurs

Case Study 3: Coastal Flooding (surface water, highway, sewer and

watercourse flooding) across Torbay, UK **Lead Partner:** UNEXE and Torbay Council

Case Study 4: International Event Lead Partner: USAL and NCSRD

Case Study 5: Rapid Winter Flooding (melting ice, narrow mountain streams,

flooding) around Dresden, Germany

Lead Partner: Fraunhofer IVI

With the financial support of

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 653824

MET(NO) UNEXE(UK) CEREN(FR) ARTELIA(FR) XUVASI(UK) EUC(CY) HNMS(GREECE) SATWAYS(GR) NCSRD(GR) OMU(PL) ADITESS(CY) TORBAY(UK) DHMZ(HR) MRK(DE) KEMEA(GR) USAL(UK) VVG(HR) DUZS(HR) FRAUNHOFER(DE)

Thank You for Your attention!

Thanasis Sfetsos

Project Coordinator (NCSRD)

ts@ipta.demokritos.gr

George Eftychidis
SAG Coordinator (KEMEA)
g.eftychidis@gmail.com

